Copied to
clipboard

G = C23.D11order 176 = 24·11

The non-split extension by C23 of D11 acting via D11/C11=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.D11, C22.11D4, C22⋊Dic11, C22.7D22, (C2×C22)⋊2C4, C22.9(C2×C4), C112(C22⋊C4), (C2×Dic11)⋊2C2, C2.3(C11⋊D4), (C2×C22).7C22, (C22×C22).2C2, C2.5(C2×Dic11), SmallGroup(176,18)

Series: Derived Chief Lower central Upper central

C1C22 — C23.D11
C1C11C22C2×C22C2×Dic11 — C23.D11
C11C22 — C23.D11
C1C22C23

Generators and relations for C23.D11
 G = < a,b,c,d,e | a2=b2=c2=d11=1, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

2C2
2C2
2C22
2C22
22C4
22C4
2C22
2C22
11C2×C4
11C2×C4
2Dic11
2C2×C22
2C2×C22
2Dic11
11C22⋊C4

Smallest permutation representation of C23.D11
On 88 points
Generators in S88
(45 56)(46 57)(47 58)(48 59)(49 60)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)(73 84)(74 85)(75 86)(76 87)(77 88)
(1 32)(2 33)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)
(1 21)(2 22)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(45 56)(46 57)(47 58)(48 59)(49 60)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)(73 84)(74 85)(75 86)(76 87)(77 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 77 32 55)(2 76 33 54)(3 75 23 53)(4 74 24 52)(5 73 25 51)(6 72 26 50)(7 71 27 49)(8 70 28 48)(9 69 29 47)(10 68 30 46)(11 67 31 45)(12 86 34 64)(13 85 35 63)(14 84 36 62)(15 83 37 61)(16 82 38 60)(17 81 39 59)(18 80 40 58)(19 79 41 57)(20 78 42 56)(21 88 43 66)(22 87 44 65)

G:=sub<Sym(88)| (45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,32)(2,33)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,77,32,55)(2,76,33,54)(3,75,23,53)(4,74,24,52)(5,73,25,51)(6,72,26,50)(7,71,27,49)(8,70,28,48)(9,69,29,47)(10,68,30,46)(11,67,31,45)(12,86,34,64)(13,85,35,63)(14,84,36,62)(15,83,37,61)(16,82,38,60)(17,81,39,59)(18,80,40,58)(19,79,41,57)(20,78,42,56)(21,88,43,66)(22,87,44,65)>;

G:=Group( (45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,32)(2,33)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,77,32,55)(2,76,33,54)(3,75,23,53)(4,74,24,52)(5,73,25,51)(6,72,26,50)(7,71,27,49)(8,70,28,48)(9,69,29,47)(10,68,30,46)(11,67,31,45)(12,86,34,64)(13,85,35,63)(14,84,36,62)(15,83,37,61)(16,82,38,60)(17,81,39,59)(18,80,40,58)(19,79,41,57)(20,78,42,56)(21,88,43,66)(22,87,44,65) );

G=PermutationGroup([[(45,56),(46,57),(47,58),(48,59),(49,60),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83),(73,84),(74,85),(75,86),(76,87),(77,88)], [(1,32),(2,33),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86),(65,87),(66,88)], [(1,21),(2,22),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(45,56),(46,57),(47,58),(48,59),(49,60),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83),(73,84),(74,85),(75,86),(76,87),(77,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,77,32,55),(2,76,33,54),(3,75,23,53),(4,74,24,52),(5,73,25,51),(6,72,26,50),(7,71,27,49),(8,70,28,48),(9,69,29,47),(10,68,30,46),(11,67,31,45),(12,86,34,64),(13,85,35,63),(14,84,36,62),(15,83,37,61),(16,82,38,60),(17,81,39,59),(18,80,40,58),(19,79,41,57),(20,78,42,56),(21,88,43,66),(22,87,44,65)]])

C23.D11 is a maximal subgroup of
C22.2D44  C23⋊Dic11  C23.11D22  C22⋊Dic22  C23.D22  C22⋊C4×D11  D22.D4  Dic11.D4  C44.48D4  C23.21D22  C4×C11⋊D4  C23.23D22  D4×Dic11  C23.18D22  C44.17D4  C23⋊D22  C442D4  Dic11⋊D4  C24⋊D11
C23.D11 is a maximal quotient of
C44.55D4  C22.C42  D4⋊Dic11  C44.D4  C23⋊Dic11  Q8⋊Dic11  C44.10D4  C44.56D4

50 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D11A···11E22A···22AI
order122222444411···1122···22
size111122222222222···22···2

50 irreducible representations

dim111122222
type+++++-+
imageC1C2C2C4D4D11Dic11D22C11⋊D4
kernelC23.D11C2×Dic11C22×C22C2×C22C22C23C22C22C2
# reps12142510520

Matrix representation of C23.D11 in GL3(𝔽89) generated by

8800
010
07488
,
8800
010
001
,
100
0880
0088
,
100
0160
03939
,
5500
06927
0520
G:=sub<GL(3,GF(89))| [88,0,0,0,1,74,0,0,88],[88,0,0,0,1,0,0,0,1],[1,0,0,0,88,0,0,0,88],[1,0,0,0,16,39,0,0,39],[55,0,0,0,69,5,0,27,20] >;

C23.D11 in GAP, Magma, Sage, TeX

C_2^3.D_{11}
% in TeX

G:=Group("C2^3.D11");
// GroupNames label

G:=SmallGroup(176,18);
// by ID

G=gap.SmallGroup(176,18);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,20,101,4004]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^11=1,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C23.D11 in TeX

׿
×
𝔽